PC384

SEAT No.:

[Total No. of Pages: 3

[6359]-504

S.E. (Civil) (Insem)

ENGINEERING MATHEMATICS - III (2019 Pattern) (Semester - III) (207001)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- Attempt Q.1 or Q.2 and Q.3 or Q.4.
- Use of electronic pocket calculator is allowed. *2*)
- Assume suitable data, if necessary. 3)
- Neat diagrams must be drawn wherever necessary.
- Figures to the right indicate full marks.
- Solve the following differential equations (Any two) *Q1*) a)

i)
$$(D-4)^3y = e^{4x} + 3^x$$
 where $D = \frac{d}{dx}$
ii) $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 4y = x^6$ [5]

ii)
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + 4y = x^6$$
 [5]

- $(D^2 + 3D + 2)y = \sin e^x$ [Use variation of parameter method]
- A light horizontal strut AB of length 'l' is freely pinned at A & B and is under the action of equal and opposite compressive forces 'P' at each of its ends with load 'W' at its centre governed by the differential equation

$$EI\frac{d^2y}{dx^2} = -\left[\frac{Wx}{2} + Py\right]$$

for
$$x = 0$$
, $y = 0$, for $x = \frac{l}{2}$, $\frac{dy}{dx} = 0$

show that the deflection at the centre

where
$$n^2 = \frac{P}{EI}$$
, E: modulus of
elasticity
I: Moment of inertia

Solve the following differential equations (Any two) *Q***2**) a)

i)
$$(D^2 - 6D + 9)y = \frac{e^{3x}}{x}$$
 [5]

ii)
$$(D^2 - 4D + 3)y = e^x \cdot \cos 2x$$
 [5]

ii)
$$(D^2 - 4D + 3)y = e^x \cdot \cos 2x$$
 [5]
iii)
$$\frac{dx}{yz} = \frac{dy}{xz} \frac{dz}{xy}$$
 [5]

- Find the elastic curve of a uniform cantilever beam of length 'l' having a b) constant weight 'W' kg per unit length and determine the deflection at the free end. [5]
- Solve following system of equations by using Gauss-elimination method *Q3*) a) [5]

$$10x + 2y + z = 9$$

$$2x + 20y - 2z = -44$$

$$-2x + 3y + 10z = 22$$

Use the Runge - Kutta fourth order method to solve b) [5]

$$\frac{dy}{dx} = x^2 + y^2$$
; $y(0) = 1$ at $x = 0.1$ with $h = 0.1$

esky-met. Solve the following system of equations by using Cholesky-method [5] c)

$$9x_1 + 6x_2 + 12x_3 = 17.4$$

$$6x_1 + 13x_2 + 11x_3 = 23.6$$

$$12x_1 + 11x_2 + 26x_3 = 30.8$$

OR

[5]

Solve by Jacobi Iteration method **Q4**) a)

$$10x + y - z = 11.19$$
$$x + 10y + z = 28.08$$
$$-x + y + 10z = 35.61$$

Correct to two decimal places.

Use Euler's modified method to find the value of satisfying the equation b)

$$\frac{dy}{dx} = \log(x+y) \; ; \, y(1) = 2.$$

Find y for x = 1.2 by taking h = 0.2.

[5]

Numerical solution of the differential equation $\frac{dy}{dx} = xy + y^2$ is tabulated as Find y at x = 0.4 by Milne's predictor - corrector method by taking h = 0.1. c)

х	0	0.1	0.2	0.3
у	1.0000	1.1169	1.2773	1.5049

Trector 1.

Application of the control of the contr